Synthesis and Characterization of [V(NCCH₃)₆-ZnCl₄], a Low Valence Vanadium Complex

P. CHANDRASEKHAR* and P. H. BIRD**

Department of Chemistry, State University of New York at Buffalo, Buffalo, N.Y. 14214, U.S.A.

Received September 11, 1984

Reaction of vanadium halides with metal alkyls is a frequently used and not always successful route to lower valence vanadium compounds [1], the other methods commonly employed being electrochemical reduction [2, 3] and the use of reducing agents such as zinc dust [4]. Characterization of such low valence vanadium compounds can give much insight into the bonding characteristics of vanadium in its lower oxidation states; this is at present limited primarily due to the experimental difficulties encountered in working with the lower oxidation states of V [5, 6]. Another significant application of such reactions is in the production of highly specific catalytic systems [7], the most well known of which are of course the Ziegler-Natta catalysts [8, 9]. In the homogeneous variety of these catalysts, the active intermediate is thought to be a low-valence transition metal to which an alkyl group is coordinated; however, attempts at isolation and characterization of the active intermediate have proved elusive [10]. With this aim in mind, we investigated the reduction of VCl₃ by ZnEt₂ in acetonitrile and tetrahydrofuran (THF); in the strongly coordinating CH₃CN, this yielded the product $[V(NCCH_3)_6ZnCl_4]$, whose crystal structure is presented here. The results of complementary investigations of the reaction of VCl₃ with AlEt₃ in various solvents have been reported in an earlier communication from this laboratory [11].

Experimental

Syntheses

All experiments were carried out under a dry N_2 or argon atmosphere using standard Schlenkware, drybox and vacuum-line techniques. ZnEt₂ was prepared from EtI-EtBr and a Zn-Cu couple as described elsewhere [12]. Elemental analyses were

performed by Galbraith Laboratories (Knoxville, Tennessee). IR measurements of solid samples, prepared as nujol mulls between AgCl windows, were carried out on a Perkin-Elmer IR 599 (double beam) spectrometer. UV-Vis measurements of solutions under argon atmosphere were carried out on a Pye-Unicam SP8-100 (d. beam) spectrometer.

$[V(NCCH_3)_6ZnCl_4]$

5 ml of 0.1 M ZnEt₂/CH₃CN and 5 ml of 0.1 M VCl₃/CH₃CN were cooled to *ca.* -85 °C and the VCl₃ solution added slowly to the ZnEt₂ (via syringe and septa) with stirring. An intense violet coloration [11] was obtained immediately on mixing the reactants. After keeping the solution, without reduction in volume, for 5-6 h at -20 °C, greenish-black crystals, insoluble in CH₃CN were obtained. These were washed with the solvent, dried and sealed under vacuum. Variation of the V/Zn ratio did not yield a different product. UV-Vis., react. mixt. in CH₃CN (nm): 487 (ϵ : 600, CT); 680 (ϵ : 70, ⁴A_{2g} \rightarrow ⁴T_{1g}, V(II)). IR (cm⁻¹): 2920-2830 (ν (CH), s., br.); 2280 (ν (C=N), s.); 2310 (ν (C=N), s.); 1450 (ν_{as} (CH₃), s., br.); 1370 (ν_{s} (CH₃), s., br.); 715 (s.); 415 (C-C=N bend, v.s.).

$[V(THF)_4 ZnCl_4]$

5 ml 0.1 M ZnEt₂/THF and 5 ml 0.1 M VCl₃/ THF were cooled to *ca*. -40 °C. The VCl₃ solution was slowly added to the ZnEt₂ (via syringe and septa) with constant stirring. An intense violet coloration was immediately obtained. On slight reduction of the volume of the reaction mixture and keeping for 3 days at -20 °C, purple-black crystals, insoluble in THF, were obtained. Washed with THF, dried and sealed *in v acuo*. UV-Vis., reac. mixt. in THF, (nm): 483 (ϵ : 390, CT); 600 (ϵ : 72). IR (cm⁻¹): 1455; 1372 (ν (CH₃), v.s.); 1035 (ν (C-O-C), m.s.); 1015 (s.); 362 (ν (V-O_{THF}), s.)

Crystal Structure of [V(NCCH₃)₆ ZnCl₄]

Determination: A suitable crystal of approximate dimensions $0.3 \times 0.2 \times 0.2$ mm was mounted in a capillary and sealed under vacuum. A Picker 4-circle diffractometer interfaced to a PDP 8/a minicomputer and employing the peak search, centering, indexing and data collection package of the National Research Council of Canada [13] was used. Mo K_{\alpha} radiation ($\lambda = 0.71069$ Å) with a graphite monochromator was employed. The θ -2 θ scan mode was used. The structure was solved by conventional heavy-atom techniques, the Zn and V atoms being located by Patterson synthesis. Block-diagonal least-squares refinement yielded the positions of all remaining non-H atoms. With anisotropic thermal parameters

^{*}Author to whom correspondence should be addressed. **Present address: Department of Chemistry, Concordia University, Montreal, H3G 1M8, Canada.

 (U_{ij}) 's) a final *R*-factor of 0.069 (0.086 weighted) was obtained.

Crystal Data: ZnVCl₄N₆C₁₂H₁₈, FW = 504.49; Space group $P\overline{1}$; a = 11.832(5) Å, b = 12.592(5) Å, c = 11.801(5) Å; $\alpha = 62.17(1)^{\circ}$, $\beta = 119.90(1)^{\circ}$, $\gamma = 117.78(1)^{\circ}$; V = 1283.92 Å³; $D_{obs} = 1.29$ g cm⁻³, $D_{calc} = 1.304$ g cm⁻³; Z = 2; Unique reflections ($I > 3\sigma(I)$), 2018, pamts., 1.64; R = 0.097, $R_w = 0.048$ (Function minimized: $\Sigma w(|F_o| - |F_c|)^2$, $w = 1/(\sigma(F_o))^2$, $R = (\Sigma ||F_o| - |F_c|)/\Sigma |F_o|$, $R_w = ((w(|F_o| - |F_c|))^2/(\Sigma w |F_o|)^2)^{1/2}$). GOF (= $[\Sigma w(|F_o| - |F_c|)^2/(N_o - N_v)]^{1/2}$, N_o and N_v , respectively, N° of observations and variables) = 4.27.

Table I lists the final positional parameters, with e.s.d.s, for $[V(NCCH_3)_6ZnCl_4]$. The labeling scheme is illustrated in the ORTEP drawing depicted in Fig. 1. Table II lists the important bonded contacts, with estimated standard deviations.

Results and Discussion

 $[V(NCCH_3)_6ZnCl_4]$, depicted in Fig. 1, consists of a hexakis(acetonitrile) V(II) species, octahedrally coordinated and with a formal charge of +2, and a tetrachlorozincate moiety, with a formal charge of -2, in which the Zn has (near) tetrahedral coordina-

TABLE I. Positional Parameters, with e.s.d.s for $[V(NCCH_3)_6 ZnCl_4]$.

Atom	x	У	Z
Zn	0.2658(1)	0.2878(1)	0.7340(2)
V	0.9108(2)	0.2826(2)	0.0893(2)
C11	0.2418(4)	0.2346(4)	0.5712(4)
C12	0.0644(3)	0.2351(4)	0.7583(4)
C13	0.4294(3)	0.2358(3)	0.9360(4)
Cl4	0.3373(4)	0.5127(3)	0.6624(4)
N1	0.7329(9)	0.1144(9)	0.1367(9)
N2	0.8602(9)	0.115(1)	-0.018(1)
N3	0.9562(9)	0.3428(8)	0.2054(9)
N4	1.0942(8)	0.3434(9)	0.0446(9)
N5	1.0188(9)	0.1132(9)	0.2663(9)
N6	0.7953(8)	0.3427(8)	-0.0937(9)
C1a	0.640(1)	0.040(1)	0.164(1)
C1b	0.516(1)	-0.054(1)	0.198(1)
C2a	0.837(1)	0.039(1)	-0.063(1)
C2b	0.803(1)	-0.054(1)	-0.126(1)
C3a	0.976(1)	0.390(1)	0.277(1)
C3b	0.999(2)	0.459(1)	0.365(2)
C4a	1.193(1)	0.391(1)	0.026(1)
C4b	1.326(1)	0.456(2)	0.004(2)
C5a	1.066(1)	0.038(1)	0.363(1)
C5b	1.126(1)	-0.054(1)	0.485(1)
C6a	0.724(1)	0.391(1)	-0.192(1)
C6b	0.637(1)	0.457(1)	-0.322(1)

V (NCCH₃)²⁺

Fig. 1a. ORTEP drawing of the $[V(NCCH_3)_6]^{II}$ moiety, showing labeling scheme.

Fig. 1b. ORTEP drawing of the tetrachlorozincate moiety, showing labeling scheme.

TABLE II. Relevant Bond Lengths and Angles, with e.s.d.s for $[V(NCCH_3)_6 ZnCl_4]$.

Distances (e.s.d)), Å		
Zn-Cl1	2.253(5)	N2-C2a	1.17(2)
Zn-Cl2	2.258(4)	N3-C3a	1.13(2)
Zn-Cl3	2.260(5)	N4C4a	1.12(2)
Zn-Cl4	2.280(5)	N5-C5a	1.16(2)
V-N1	2.11(1)	N6-C6a	1.13(2)
V-N2	2.08(1)	Cla-Clb	1.50(2)
V-N3	2.11(1)	C2a-C2b	1.47(2)
V-N4	2.14(1)	C3a-C3b	1.50(2)
V-N5	2.11(1)	C4a-C4b	1.49(2)
V-N6	2.12(1)	C5a-C5b	1.46(2)
N1–C1a	1.14(2)	C6a-C6b	1.46(2)
Angles (e.s.d), d	eg		
Cl1-Zn-Cl2	116.6(2)	N2V-N6	88.6(4)
Cl1-Zn-Cl3	111.8(2)	N5-VN6	176.3(4)
Cl1-Zn-Cl4	107.2(2)	N3-V-N4	92.1(4)

TABLE II. (continued)

Cl2-Zn-Cl3	111.8(2)	N3-V-N6	93.0(4)
Cl2-Zn-Cl4	107.3(2)	N3-V-N5	90.4(4)
Cl3-Zn-Cl4	106.9(2)	N4-V-N5	89.1(4)
N1 - V - N2	87.1(4)	N4-V-N6	92.2(4)
N1-VN3	90.0(4)	V-N1-C1a	173(1)
N1-V-N4	176.8(4)	V-N2-C2a	172(1)
N1-V-N5	88.5(4)	V-N3-C3a	173(1)
N1-V-N6	90.0(4)	V-N4-C4a	174(1)
N2-V-N3	176.7(5)	V-N5-C5a	173(1)
N2-V-N4	90.7(4)	V-N6-C6a	174(1)
N2-V-N5	88.0(5)		

tion. The bond angles (Table II) show that there is some slight deviation from tetrahedral and octahedral coordination, respectively, for the Zn and V atoms; this may be ascribed to crystal packing forces, as the cell packing arrangement has shown the existence of a large void. The average Zn-Cl bond distance, 2.26 Å, agrees well with the 2.26 Å observed in Na_2ZnCl_4 [14], where, however, near perfect tetrahedral cordination for the Zn atoms was observed. The Zn-Cl bond is slightly longer than that observed in 4(acpy)₂ZnCl₂ (2.206 Å) [15], ZnCl₂ (2.204 Å) and in $4-(CN-py)_2ZnCl_2$ (2.207 Å) [16]. In the $(V(NCCH_3)_6)^{II}$ moiety, substantial $d_{\pi} \rightarrow \pi^*$ (ligand) interaction would be expected to strenghthen the bond; thus the average V-N distance (2.11 Å) may be compared with that in $[V^{(V)}O(NO_3)_3NCCH_3]$ (2.24 Å) [17] and in $[V^{(II)}(py)_4Cl_2]$ (2.189 Å) [18], the M-L (V-N) interaction in the latter being not as strong as for a cyano ligand. It is also interesting to note that in the title compound, $[V(NCCH_3)_{6}]$ ZnCl₄], only 15 electrons are assignable to the V.

The V-N-C bond angle (173.4° av.) shows a deviation from the expected linearity which has been observed earlier for coordinated CH₃CN [4, 17]; in line with this, the C-C=N bending frequency in the IR spectrum shifts from 373 cm⁻¹ in the free ligand to 415 cm⁻¹ in the complex, while the C=N stretch frequencies are shifted from 2290 and 2245 cm⁻¹ (free ligand) to 2310 and 2280 cm⁻¹, also indicating a shortening of the bond in the complex; the latter values may be compared with 2310 and 2285 cm⁻¹ observed in [V^(III)(NCCH₃)₄Cl₂], [4].

A plausible scheme for the reactions leading to the formation of the product, $[V(NCCH_3)_6ZnCl_4]$, is the possible alkylation of only one coordinative position of the V(III) (through metathetical exchange between $[V(NCCH_3)_3Cl_3]$ and $ZnEt_2$ in CH₃CN) with subsequent displacement of this single ethyl group by the strongly coordinating solvent (CH₃-CN), leading to the reduction of V(III) to V(II) (and gaseous hydrocarbon products). This role of the solvent may explain why no V-ethyl bonds are isolated in our product, whereas they are, for instance, when a weakly coordinating solvent such as n-pentane is used, as in the formation of $[VD_2H_5-$ Cl₂] from VCl₄ and ZnEt₂ in n-pentane [19]. Thus the choice of solvents of low coordinative ability in, for instance, Ziegler-Natta catalysis reactions, is supported, since any transition metal-alkyl bonds existing in the catalytically active intermediate would appear to be stabilized.

Acknowledgement

Partial support of this research through a grant from the National Science Foundation (NSF No. 150-2705A) (U.S.A.) is gratefully acknowledged.

References

- 1 N. Kano, T. Tanaka and A. Murakami, (Mitsubishi Chem. Ind. Co., Ltd.), Jpn. Kokai, No 77 156 195.
- 2 J. J. Habeeb, L. Neilson and D. G. Tuck, Can. J. Chem., 55, 2631 (1977).
- 3 H.-J. Seifert and B. Gerstenberg, Z. Anorg. Allg. Chem., 315, 56 (1962).
- 4 H.-J. Seifert and T. Auel, J. Inorg. Nucl. Chem., 30, 2081 (1968).
- 5 R. Matsuzaki and Y. Saeki, Bull. Chem. Soc. Jpn., 53, 2843 (1980).
- 6 W. P. Schaefer, Inorg. Chem., 4, 642 (1965).
- 7 G. Henrici-Olive and S. Olive, Angew. Chem., Int. Ed. Engl., 6, 790 (1967).
- 8 K. Ziegler, E. Holzkamp, H. Breil and H. Martin, Angew. Chem., 67, 541 (1955).
- 9 G. Natta, Angew. Chem., 68, 393 (1956).
- 10 R. Schrock, S. McLain and J. Sancho, Pure Appl. Chem., 52, 729 (1980).
- 11 P. Chandrasekhar and P. H. Bird, Inorg. Chem., in press.
- 12 G. E. Coates and K. Wade, (eds.), 'Organometallic Compounds, Vol. I. The Main Group Elements', Methuen, London, 1967.
- 13 E. J. Gabe, A. C. Larsen, Y. Wang and F. L. Lee, Chem. Divn. of National Research Council of Canada, Ottawa.
- 14 C. J. J. van Loon and D. Visser, Acta Crystallogr., Sect. B:, 33, 188 (1977).
- 15 W. L. Steffer and G. J. Palenic, Acta Crystallogr., Sect. B:, 32, 298 (1976).
- 16 M. A. Porai-Koshitz, Ah. Strukt. Khim., 17, 1124 (1976).
- 17 F. W. B. Einstein, E. Enwall, D. M. Morris and D. Sutton, *Inorg. Chem.*, 10, 678 (1971).
- 18 E. Brauer and C. Kruger, Cryst. Struct. Commun., 3, 421 (1973).
- 19 K. Jacobs, S. Wagner, W. Schumann and K.-H. Thiele, Z. Anorg. Allg. Chem., 427, 75 (1976).